

[Balamani* *et al.*, 5(10): October, 2016] ICTM Value: 3.00

IJESRT

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

SEPARATION AXIOMS BY $\psi^* \alpha$ -CLOSED SETS

N. Balamani, A. Parvathi

Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women University, Coimbatore-641043 Tamil Nadu, India.

DOI: 10.5281/zenodo.159457

ABSTRACT

In this paper separation axioms of $\psi^* \alpha$ -closed sets namely $_{\psi^* \alpha} T_c$ -space, $_{\psi^* \alpha} T_{\alpha}$ -space, $_{g\alpha} T_{\psi^* \alpha}$ -space, $_{\alpha g} T_{\psi^* \alpha}$ -space and $_{\psi g} T_{\psi^* \alpha}$ -space are introduced and their properties are analyzed.

KEYWORDS: αg -closed sets, $g\alpha$ - closed sets, ψg -closed sets and $\psi^* \alpha$ -closed sets

INTRODUCTION

Njastad [7] introduced the concept of an α -open sets. Levine [5] introduced the notion of g-closed sets in topological spaces and studied their basic properties. Ramya and Parvathi [8] introduced a new concept of generalized closed sets called $\psi \hat{g}$ -closed sets and ψg -closed sets in topological spaces. A new class of generalized closed sets called $\psi^* \alpha$ -closed sets in topological spaces using ψg -closed sets was introduced in 2016 by Balamani and Parvathi[1]. The objective of this paper is to contribute the separation axioms by $\psi^* \alpha$ -closed sets and study their properties. Throughout this paper (X, τ) represents non-empty topological space on which no separation axioms are specified, unless otherwise mentioned.

PRELIMINARIES

Definition 2.1 A subset A of a topological space (X, τ) is called

- 1) generalized closed set (briefly g-closed) [5] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 2) semi-generalized closed set (briefly sg-closed)[2] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi- open in (X, τ) .
- 3) ψ -closed set [10] if scl(A) \subseteq U whenever A \subseteq U and U is sg-open in (X, τ).
- 4) ψ g-closed set [8] if ψ cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).
- 5) $\psi^* \alpha$ -closed set[1] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is ψg -open in (X, τ) .
- 6) The closure operator of $\psi^* \alpha$ -closed set is defined as $\psi^* \alpha cl(A) = \bigcap \{F \subseteq X : A \subseteq F \text{ and } F \text{ is } \psi^* \alpha \text{ -closed in } (X,\tau) \} [1]$
- **Definition 2.2** A topological space (X, τ) is said to be a
- (i) T_b space if every gs-closed subset of (X, τ) is closed in (X, τ) . [4]
- (ii) T_d space if every gs-closed subset of (X, τ) is g-closed in (X, τ) . [4]
- (iii) T_c- space if every gs-closed subset of (X, τ) is g^{*}-closed in (X, τ) . [9]
- (iv) $_{\alpha}T_{b}$ space if every α g-closed subset of (X, τ) is closed in (X, τ). [3]
- (v) $_{\alpha}T_{1/2}$ -space if every g α -closed subset of (X, τ) is α -closed in (X, τ). [6]
- (vi) $_{1/2}T_{\alpha}$ -space if every α g-closed subset of (X, τ) is α -closed in (X, τ) . [6]
- (vii) $_{\alpha}T_{d}$ space if every α g-closed subset of (X, τ) is g-closed in (X, τ). [3]
- (viii)) $_{\alpha}T_{c}$ space if every α g-closed subset of (X, τ) is g^{*}-closed in (X, τ). [9]
- (ix) ${}^{*}T_{1/2}$ space if every g-closed subset of (X, τ) is g * -closed in (X, τ). [9]
- (x) α -space if every α -closed subset of (X, τ) is closed in (X, τ). [7]
- (xi) ψ -space if every ψ -closed subset of (X, τ) is closed in (X, τ).[10]

[Balamani* *et al.*, 5(10): October, 2016] ICTM Value: 3.00 ISSN: 2277-9655 Impact Factor: 4.116 CODEN: IJESS7

SEPARATION AXIOMS

Definition 3.1 A topological space (X, τ) is said to be a

(i) $_{\Psi^*\alpha}T_c$ -space if every $\psi^*\alpha$ closed subset of (X, τ) is closed in (X, τ) .

(ii) $_{\psi^*\alpha} T_{\alpha}$ -space if every $\psi^* \alpha$ closed subset of (X, τ) is α - closed in (X, τ) .

(iii) $_{g\alpha}T_{\psi^*\alpha}$ - space if every $g\alpha$ - closed subset of (X, τ) is $\psi^*\alpha$ -closed in (X, τ) .

(iv) $_{\alpha_{g}}T_{\psi^{*}\alpha}$ -space if every α_{g} - closed subset of (X, τ) is $\psi^{*}\alpha$ -closed in (X, τ) .

(vii) $\psi_g T_{\psi^*\alpha}$ -space if every ψ_g - closed subset of (X, τ) is $\psi^*\alpha$ -closed in (X, τ) .

Proposition 3.2 Every $_{\Psi^*\alpha}T_c$ -space is a $_{\Psi^*\alpha}T_{\alpha}$ -space but not conversely.

Proof: Let A be a $\psi^* \alpha$ -closed set in (X, τ) . Since (X, τ) is a $_{\psi^* \alpha} T_c$ -space, A is closed in (X, τ) . Since every closed set is α -closed, A is α -closed in (X, τ) . Hence (X, τ) is $_{\psi^* \alpha} T_{\alpha}$ -space.

Example 3.3 Let X={a, b, c} with topology $\tau = \{\phi, \{a\}, \{X\}\}$. Then (X, τ) is a $\psi^* \alpha T_\alpha$ -space but not $\psi^* \alpha T_c$ -space, since the subset {b} is $\psi^* \alpha$ -closed but not closed in (X, τ) .

Theorem 3.4 If (X, τ) is a $_{\psi^*\alpha}T_{\alpha}$ - space and an α - space, then it is a $_{\psi^*\alpha}T_c$ - space.

Proof: Let A be a $\psi^* \alpha$ -closed set in (X, τ) .Since (X, τ) is a $_{\psi^* \alpha} T_{\alpha}$ - space, A is α - closed in (X, τ) Since (X, τ) is an α - space, A is closed in (X, τ) Hence (X, τ) is a $_{\psi^* \alpha} T_c$ - space.

Theorem 3.5 If (X, τ) is a $_{\psi^*\alpha}T_c$ - space (resp. $_{\psi^*\alpha}T_\alpha$ - space) then $\psi^*\alpha cl(B) = cl(B)(resp. \alpha cl(B))$ for each subset B of (X, τ) .

Proof: Since (X, τ) is a $\psi^* \alpha T_c$ - space (resp. $\psi^* \alpha T_\alpha$ - space). Since every closed (resp. α - closed) set is $\psi^* \alpha$ - closed in (X, τ) , $\psi^* \alpha C((X, \tau) = C(X, \tau)$ (resp. $\alpha C(X, \tau)$). Hence $\psi^* \alpha cl(B) = cl(B)$ (resp. $\alpha cl(B)$) for each subset B of (X, τ) .

Theorem 3.6 If (X, τ) is a $_{\psi *\alpha}T_c$ -space, then for each $x \in X$ either $\{x\}$ is ψg - closed or open.

Proof: Let $x \in X$ and suppose $\{x\}$ is not ψg - closed in (X, τ) . Then X- $\{x\}$ is not ψg - open. Hence X is the only ψg - open set containing X - $\{x\}$. This implies that X - $\{x\}$ is a $\psi^* \alpha$ - closed set in (X, τ) . Since (X, τ) is a $\psi^* \alpha T_c$ -space, X- $\{x\}$ is a closed in (X, τ) or equivalently $\{x\}$ is open in (X, τ) .

Theorem 3.7 For a space (X, τ) the following conditions are equivalent

(i) (X, τ) is a $\psi^* \alpha T_\alpha$ - space

(ii) For each $x \in X$, $\{x\}$ is either α - open or ψg - closed.

Proof: (i) \Rightarrow (ii) Let $x \in X$ and suppose $\{x\}$ is not ψg - closed in (X, τ) . Then X- $\{x\}$ is not ψg -open. Hence X is the only ψg - open set containing X- $\{x\}$. So X - $\{x\}$ is a $\psi^* \alpha$ - closed set in (X, τ) . Since (X, τ) is a $\psi^* \alpha T_\alpha$ - space, X- $\{x\}$ is an α -closed set in (X, τ) or equivalently $\{x\}$ is an α - open set in (X, τ) .

(ii) \Rightarrow (i) Let A be a $\psi^* \alpha$ - closed set in (X, τ) and $x \in \alpha cl(A)$. We show that $x \in A$ for the following two cases.

Case 1: Assume that $\{x\}$ is α - open. Then X- $\{x\}$ is α - closed. If $x \notin A$, then $A \subseteq X-\{x\}$. Since $x \in \alpha cl(A)$, we have $x \in X-\{x\}$, which is a contradiction. Hence $x \in A$.

Case 2: Assume that $\{x\}$ is ψg - closed and $x \notin A$. Then $\alpha cl(A)$ -A contains a ψg - closed set $\{x\}$. This contradicts Theorem 4.5[1]. Therefore $x \in A$.

Theorem 3.8 If (X, τ) is a $\psi^* \alpha T_\alpha$ -space, then for every subset A of $(X, \tau) \psi^* \alpha cl(A)$ is α - closed in (X, τ) .

Proof: By definition, $\psi^* \alpha cl(A) = \bigcap \{F \subseteq X: A \subseteq F \text{ and } F \text{ is } \psi^* \alpha \text{ -closed in } (X, \tau)\}$. Since (X, τ) is a $_{\psi^* \alpha} T_\alpha$ - space, $\psi^* \alpha cl(A)$ is α - closed in (X, τ) . Since every α - closed set is $\psi^* \alpha$ - closed set in (X, τ) , $\psi^* \alpha cl(A)$ is α - closed in (X, τ) .

Proposition 3.9 Every $_{\alpha}T_{1/2}$ -space (resp. $_{1/2}T_{\alpha}$ -space) is a $_{\Psi^*\alpha}T_{\alpha}$ -space but not conversely.

Proof: Let (X, τ) be an $T_{1/2}$ -space(resp. $_{1/2}T_{\alpha}$ -space) and let A be a $\psi^*\alpha$ -closed set in (X, τ) . By proposition 3.10[1] A is $g\alpha$ -closed (resp. αg -closed) in (X, τ) . Since (X, τ) is an $_{\alpha}T_{1/2}$ -space(resp. $_{1/2}T_{\alpha}$ -space), A is α -closed in (X, τ) . Hence (X, τ) is $_{\psi^*\alpha}T_{\alpha}$ -space.

Example 3.10 Let X={a, b, c} with topology $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then (X, τ) is a $\psi^* \alpha T_\alpha$ - space but not an $\alpha T_{1/2}$ -space and not a $_{1/2}T_\alpha$ -space, since the subsets {b}, {c}, {a, b} and {a, c} are $g\alpha$ - closed and αg -closed but not α -closed in (X, τ)

Proposition 3.11 Every T_b -space is a $_{\Psi^*\alpha}T_{\alpha}$ -space but not conversely.

Proof: Let (X, τ) be a T_b-space and let A be a $\psi^* \alpha$ -closed set in (X, τ) . By proposition 3.10[1] A is gs-closed in (X, τ) . Since (X, τ) is a T_b-space, A is closed in (X, τ) and so it is α -closed in (X, τ) . Hence (X, τ) is $\psi^* \alpha T_{\alpha}$ -space.

[Balamani* *et al.*, 5(10): October, 2016] Imp ICTM Value: 3.00

Example 3.12 Let X={a, b, c} with topology $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then (X, τ) is a $\psi^* \alpha T_\alpha$ - space but not a T_b - space, since the subsets $\{b\}, \{c\}, \{a, b\}$ and $\{a, c\}$ are gs-closed but not closed in (X, τ) .

Proposition 3.13 Every ${}_{\alpha}T_{b}$ -space is a ${}_{\psi^{*}\alpha}T_{\alpha}$ -space but not conversely.

Proof: Let (X, τ) be a ${}_{\alpha}T_{b}$ -space and let A be a $\psi^{*}\alpha$ -closed set in (X, τ) . By proposition 3.10[1] A is g-closed in (X, τ) . Since (X, τ) is a ${}_{\alpha}T_{b}$ -space, A is closed in (X, τ) and so it is α -closed in (X, τ) . Hence (X, τ) is ${}_{\psi^{*}\alpha}T_{\alpha}$ -space.

Example 3.14 Let X={a, b, c} with topology $\tau = \{\phi, \{a\}, X\}$. Then (X, τ) is a $\psi^* \alpha T_\alpha$ - space but not a αT_b -space, since the subsets {a, b} and {a, c} are αg - closed but not closed in (X, τ) .

Proposition 3.15 Every ψ -space is a $_{\psi^*\alpha}T_{\alpha}$ -space but not conversely.

Proof: Let (X, τ) be a ψ -space and let A be a $\psi^* \alpha$ -closed set in (X, τ) . By proposition 3.24[1] A is ψ -closed in (X, τ) . Since (X, τ) is a ψ -space, A is closed in (X, τ) and so it is α -closed in (X, τ) . Hence (X, τ) is $_{\psi^* \alpha} T_{\alpha^-}$ space.

Example 3.16 Let X={a, b, c} with topology $\tau = \{\phi, \{a\}, X\}$. Then (X, τ) is a $\psi^* \alpha T_\alpha$ - space but not a ψ -space, since the subsets {b} and {c} are ψ - closed but not closed in (X, τ) .

Remark 3.17 The following examples show that $_{\psi^*\alpha}T_{\alpha}$ -space is independent from $_{g\alpha}T_{\psi^*\alpha}$ -space, $_{\alpha g}T_{\psi^*\alpha}$ -space and $_{\psi g}T_{\psi^*\alpha}$ -space

Example 3.18 Let $X = \{a, b, c\}$ with topology $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then (X, τ) is a $\psi^* \alpha T_\alpha$ -space but not a $_{g\alpha}T_{\psi^*\alpha}$ -space, not a $_{\alpha g}T_{\psi^*\alpha}$ -space and not a $_{\psi g}T_{\psi^*\alpha}$ -space, since the subsets $\{b\}, \{c\}, \{a, b\}$ and $\{a, c\}$ are $g\alpha$ -closed, αg -closed and ψg -closed but not $\psi^* \alpha$ -closed in (X, τ) .

Example 3.19 Let X={a, b, c} with topology $\tau = \{\phi, \{a, b\}, X\}$. Then (X, τ) is a $_{g\alpha}T_{\psi^*\alpha}$ -space, $_{\alpha g}T_{\psi^*\alpha}$ -space and $_{\psi g}T_{\psi^*\alpha}$ -space but not a $_{\psi^*\alpha}T_{\alpha}$ -space, since the subsets {a, c} and {b, c} are $\psi^*\alpha$ -closed but not α -closed in (X, τ) .

Remark 3.20 The space $_{\psi^*\alpha}T_{\alpha}$ is independent with α -space, $_{\alpha}T_d$ – space and $_{\alpha}T_c$ -space as seen from the following example.

Example 3.21 Let $X = \{a, b, c\}$ with topology $\tau = \{\phi, \{a, b\}, X\}$. Then (X, τ) is an α -space, αT_d -space and αT_c -space but not $\psi^* \alpha T_\alpha$ -space, since the subsets $\{a, c\}$ and $\{b, c\}$ are $\psi^* \alpha$ -closed but not α -closed in (X, τ) .

Example 3.22 Let $X = \{a, b, c\}$ with topology $\tau = \{\phi, \{a\}, \{a, b\}, X\}$. Then (X, τ) is a $_{\psi^*\alpha}T_{\alpha}$ - space but not an α - space, $_{\alpha}T_d$ - space and $_{\alpha}T_c$ -space, since the subset $\{b\}$ is α - closed and αg -closed but not closed, g-closed and g^* -closed in (X, τ) .

Remark 3.23 The following examples show that $_{\psi^*\alpha}T_{\alpha}$ - space and $^*T_{1/2}$ - space are independent.

Example 3.24 Let X = {a, b, c} with topology $\tau = \{\phi, \{a, b\}, X\}$. Then (X, τ) is a ${}^*T_{1/2}$ - space but not a $_{\Psi^*\alpha}T_{\alpha}$ - space, since the subsets {a, c} and {b, c} are $\psi^*\alpha$ - closed but not α - closed in (X, τ).

Example 3.25 Let $X = \{a, b, c\}$ with topology $\tau = \{\phi, \{a\}, X\}$. Then (X, τ) is a $_{\psi^*\alpha}T_{\alpha}$ - space but not a $^*T_{1/2}$ - space, since the subsets $\{b\}, \{c\}, \{a, b\}$ and $\{a, c\}$ are g - closed but not g^* - closed in (X, τ) .

Proposition 3.26 Every $_{\alpha g}T_{\psi^*\alpha}$ -space is a $_{g\alpha}T_{\psi^*\alpha}$ -space but not conversely.

Proof: The proof follows from the fact that every $g\alpha$ -closed set is αg - closed.

Example 3.27 Let X={a, b, c} with topology $\tau = \{\phi, \{a\}, \{a, b\}, X\}$. Then (X, τ) is a ${}_{g\alpha}T_{\psi^*\alpha}$ -space but not ${}_{\alpha g}T_{\psi^*\alpha}$ -space, since the subset {a, c} is αg - closed but not $\psi^*\alpha$ -closed in (X, τ).

Proposition 3.28 Every $\psi_g T_{\psi^*\alpha}$ -space is a $_{g\alpha} T_{\psi^*\alpha}$ -space and a $_{\alpha g} T_{\psi^*\alpha}$ -space but not conversely.

Proof: The proof follows from the fact that every $g\alpha$ - closed set and α g-closed set is ψ g- closed.

Example 3.29 Let X={a, b, c} with topology $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then (X, τ) is a ${}_{g\alpha}T_{\psi^*\alpha}$ -space and a ${}_{\alpha g}T_{\psi^*\alpha}$ -space but not a ${}_{\psi g}T_{\psi^*\alpha}$ -space, since the subsets {a} and {b} are ψg - closed but not $\psi^*\alpha$ -closed in (X, τ).

Remark 3.30 The spaces ${}_{g\alpha}T_{\psi^*\alpha}$ -space, ${}_{\alpha g}T_{\psi^*\alpha}$ -space and ${}_{\psi g}T_{\psi^*\alpha}$ -space are independent with ψ -space. **Example 3.31** Let X = {a, b, c} with topology $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then (X, τ) is a ψ -space but not a ${}_{g\alpha}T_{\psi^*\alpha}$ -space, not a ${}_{\alpha g}T_{\psi^*\alpha}$ -space and not a ${}_{\psi g}T_{\psi^*\alpha}$ -space, since the subsets {b}, {c}, {a, b} and {a, c} are $g\alpha$ - closed, α g-closed and ψ g- closed but not $\psi^*\alpha$ - closed in (X, τ).

Example 3.32 Let $X = \{a, b, c\}$ with topology $\tau = \{\phi, \{a, b\}, X\}$. Then (X, τ) is a ${}_{g\alpha}T_{\psi^*\alpha}$ -space, a ${}_{\alpha g}T_{\psi^*\alpha}$ -space and a ${}_{\psi g}T_{\psi^*\alpha}$ -space but not ψ -space, since the subsets $\{a, c\}$ and $\{b, c\}$ are ψ -closed but not closed in (X, τ) .

ENDINOTE	ISSN: 2277-9655
[Balamani* et al., 5(10): October, 2016]	Impact Factor: 4.116
ICTM Value: 3.00	CODEN: IJESS7
REFERENCES	

- [1] Balamani, N and Parvathi, A., "Between α -closed sets and \tilde{g}_{α} -closed sets", International Journal of Mathematical Archive, Vol 7(6), pp.1-10, 2016.
- [2] Bhattacharyya, P. and Lahiri, B.K., "Semi-generalized closed sets in topology", Indian J. Math., Vol.29, pp.376-382,1987.
- [3] Devi, R. Balachandran, K and Maki, H., "generalized α -closed maps and α -generalized closed maps", Indian Journal of Pure and Applied Mathematics., Vol.29, pp.37-49,1988.
- [4] Devi, R. Maki, H. and Balachandran, K. Semi generalized closed maps and generalized semi closed maps", Mem. Fac. Sci. Kochi Univ. Ser. A. Math., Vol.14, pp.41 54, 1993.
- [5]]Levine, N., "Generalized closed sets in topology", Rend. Circ. Math. Palermo, Vol. 19, pp.89 96, 1970.
- [6] Maki, H., Devi, R. and Balachandran, K., "generalized α closed sets in topology", Bull.Fukuoka. Univ. Ed, part III, 42, pp.13-21,1993.
- [7] Njastad, O., "On some classes of nearly open sets", Pacific J. Math., Vol.15, pp.961 970, 1965.
- [8] Ramya,N.,and Parvathi,A., "ψĝ-closed sets in topological spaces", International Journal of Mathematical Archive- Vol.2(10), pp.1992 – 1996,2011.
- [9] Veerakumar, M.K.R.S., "Between closed sets and g closed sets", Mem. Fac. Sci. Koch.Univ. Ser. A, Math., Vol.21, pp.1-19,2000.
- [10] Veera kumar, M.K.R.S, "Between semi-closed sets and semi-pre closed sets, Rend. Istit.Mat. Univ. Trieste, (ITALY) Vol.XXXXII, pp.25-41, 2000.